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Abstract We show that the equilibrium distribution for the dimer process on the finite Cay-
ley tree tends to a translation invariant limit as the size of the tree tends to infinity. The
same is true for the blocking process except when there is a phase transition, in which case
there are two limits, each a one-step translation of the other. We also find correlations for
occupation probabilities.
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1 Introduction

In this paper we consider two types of interacting particle processes on the finite Cayley
tree, where each vertex is either occupied (1) or unoccupied (0). In the first, called the
blocking process, particles leave (1 → 0) at a constant rate, while the rate at which they
arrive (0 → 1) depends on the number of occupied neighbours. One extreme version of the
blocking process is known as the hardcore model, where all neighbouring sites have to be
unoccupied for the particle to stick. In the dimer process particles can only move in pairs,
and thus may arrive at or leave neighbouring pairs of sites at a constant rate.

There are well known models similar to those described above, except in that particles
can only arrive but not leave. These processes necessarily terminate and are classified under
the heading of Random Sequential Adsorption (RSA). Some of the physics literature for
RSA is summarised in [2] and some of the mathematical in [8]. Renyi’s classical parking
problem is a continuous version of RSA in one dimension.
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If the rates of arrival are those of Glauber dynamics, then it is well-known that the block-
ing process possesses an Ising-type equilibrium which exhibits a phase transition [3, 7]. The
hardcore version is noted in [4] and the general case is treated in Chap. 4 of [1]. An extension
to irregular trees is given in [6].

The conditions for a phase transition are given in Theorem 5. It states that if the basic
rate of arrival is large enough, and the blocking by neighbouring particles strong enough,
a phase transition will occur. The method used is similar to that in [1], but our intention is
to interpret the phase transition in terms of the blocking model, and our formulae are not
readily extracted from his treatment, which uses the parameters of the conventional Ising
model. For the dimer model we show there is no phase transition.

The processes will be defined on the finite Cayley tree T
(n)
k , a tree radius n with the centre

having k+1 edges, and all other vertices or sites having k+1 edges except for those that are
distance n from the centre, which have one edge. The state-space is the set X of functions,
also called configurations, assigning the value 0 or 1 to each vertex. Since the processes
are Markov and the state-spaces are finite they converge to a unique equilibrium distribution
designated by P (n). For a given a set of sites A of T

(n)
k and a configuration η ∈ X, ηA denotes

the restriction of η to A and a pattern π(A) is defined by a set of values 0,1 assigned to the
sites in A. In other words, a pattern π(A) can be identified with a function in {0,1}A. The
probability of a pattern with respect to the equilibrium distribution is obtained as the sum of
the probabilities of compatible configurations. That is,

P (n)(π(A)) =
∑

P (n)(η)I{ηA=π(A)}.

For a pattern π(A) on T
(n)
k we let n → ∞ keeping the position of the pattern relative to the

root. We show that, when there is not a phase transition, P (n)(π(A)) tends to a translation
invariant limit and that, when there is a phase transition, there are different limits as n → ∞
through odd and even values, but that these limits are one-step translations of each other.

We further calculate correlations for both processes showing that they decrease geomet-
rically, in contrast to RSA where the decrease is as the reciprocal factorial of the distance.

The rest of the paper takes the following form. Conditions for phase transition in
the blocking process are given in Sect. 2.2, occupation probabilities and convergence in
Sects. 2.3–2.5, correlations in Sect. 2.7. Section 3 covers the dimer process with occupation
probabilities and convergence in Sects. 3.1–3.3 and correlations in Sect. 3.4.

2 The Blocking Process

2.1 The Blocking Process on Infinite Isotropic Bipartite Graphs

The vertices of a bipartite graph can be put into two disjoint sets each of which has its
neighbours in the other. We shall call these two sets odd and even. The blocking process ηt

is defined so that the arrival rate at an empty site is a decreasing function of the number of
occupied neighbours. Consider the transformation β on X, defined by β(η)(x) = η(x), for
x even and β(η)(x) = 1 − η(x), for x odd. The transformed process ξt = β(ηt ) is attractive
(see Definition 2.3 in Chap. II of [5]), since the rate from 0 to 1 is a non-decreasing function
of the number of occupied neighbours and the rate from 1 to 0 non-increasing. Note that
these rates are not the same for the odd and even sites.

Let δ1 be the configuration all occupied, δ0 the configuration all empty and ξ δ
t the process

ξt starting from configuration δ. Since ξt is attractive it follows, from Theorem 2.3 in
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Chap. III of [5], that ξ
δ1
t converges to the upper invariant measure ν+, and ξ

δ0
t to the lower

invariant measure ν−. But δ1 in the ξt process corresponds to the configuration β(δ1) where
the even set starts all occupied and the odd empty for the ηt process. Then η

β(δ1)
t must con-

verge to the measure μ+(·) = ν+(β(·)). On the other hand, δ0 in the ξt process corresponds
to the configuration β(δ0) where the odd set starts all occupied and the even empty for
the ηt process, which on trees and Zd is clearly a one-step translation of β(δ1). Thus the
limiting measure μ−(·) = ν−(β(·)) is also a one-step translation of μ+, in the sense that
μ−(·) = μ+(τ (·)), where τ is the one-step translation. A phase transition occurs when the
occupation probabilities for the odd and even sites are not equal. We shall see this result
reflected in our analysis of finite trees.

Theorem 1 Let ηt be a blocking process on either a regular infinite tree or Zd in which
the rate of arrival at an empty site is a non-increasing function of the number of occupied
neighbouring sites. Then the process converges from an initial state in which the even sites
are all occupied and the odd unoccupied.

In the theorem above, if the limiting measure is not one-step translation invariant, we say
that a phase transition occurs. Note that we do not require the limiting measures to be Gibbs.

2.2 The Blocking Process on Finite Trees

We shall consider a blocking process such that the rate at which particles depart (1 → 0)

is 1, and the rate at which they arrive (0 → 1) is λλr
2, where r is the number of occupied

neighbours. Note that λ2 > 1 means that occupied neighbours increase the chance of a par-
ticle arriving, λ2 < 1 that they are inhibitory and λ2 = 0 is the hardcore model. In the usual
notation for interacting particle systems the flip-rate is

c(x, η) = η(x) + (1 − η(x))λλ

∑
y∈Nx

η(y)

2 ,

where Nx = {y : |y − x| = 1}. These are the Glauber dynamics of an Ising model
and the equilibrium distribution has the probability of a configuration proportional to
λ#occupied sitesλ

#occupied pairs
2 , where pairs should always be understood as pairs of neighbouring

sites. This is a Gibbs measure and would be written exp[K ∑
σiσj + h

∑
σi] in the physics

literature.
Note that the connection between λ,λ2 and K,h is not immediate because the σi take

the values −1,1.
We shall call λ#occupied sitesλ

#occupied pairs
2 the weight of a configuration, and thus the proba-

bility of a configuration in equilibrium is its weight divided by the sum of weights over all
configurations, known as the partition function. The weight of a pattern is the sum of the
weights of the configurations compatible with it. Likewise, the probability of a pattern is
obtained by dividing the weight of the pattern by the partition function.

For a given pattern and each r1, r2, let n(r1, r2) be the number of compatible configura-
tions having r1 occupied sites and r2 pairs of neighbouring occupied sites. Then, the weight
of the pattern is given by

∑
r1,r2

n(r1, r2)λ
r1λ

r2
2 . Thus the problem resolves into counting

individual occupied sites and pairs of neighbouring occupied sites. The method used below
is very similar to that in [1], Chap. 4. The treatment in [4] is the case λ2 = 0.

Consider a finite rooted tree T and all subtrees S1, . . . , Sk emerging from the root but not
including it. Let nj (r1, r2) be the number of ways Sj can have r1 occupied sites and r2 pairs
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of neighbouring occupied sites, with corresponding generating function

Gj(s, t) =
∑

r1,r2

nj (r1, r2)s
r1 t r2 .

Let n(r1, r2), with generating function G(s, t), be the number of ways T (the root and its
subtrees) can have r1 occupied sites and r2 pairs of neighbouring occupied sites, with the
values at the root and at its neighbours on the subtrees defined but otherwise the values at
the other sites left free.

Lemma 2 Let G and Gj be as defined above. Then

G(s, t) = sm0 tm0m1

k∏

j=1

Gj(s, t),

where m0 = 1 (0) if the root is occupied (unoccupied) and m1 is the number of occupied
sites neighbouring the root.

Proof Standard arguments show that
∏k

j=1 Gj(s, t) gives the generating function for the
numbers of occupied sites and pairs of neighbouring occupied sites, ignoring the contribu-
tions from the root itself. The root contributes m0 = 0,1 occupied sites and there are m0m1

pairs of neighbouring occupied sites involving the root. �

Define R
(n)
k to be the rooted tree with the root having k branches or edges, all other

vertices or sites having k + 1 branches except for those that are distance n from the root
which have one branch. All vertices are at most distance n from the root. Let Pn(s, t) be the
generating function for the number of ways in which R

(n)
k can have r1 occupied sites and

r2 pairs of neighbouring occupied sites when the root is occupied and let Qn(s, t) be the
generating function for the number of ways R

(n)
k can have r1 occupied sites and r2 pairs of

neighbouring occupied sites, when the root is unoccupied. Thus, the probability the root is
occupied is

Pn

Pn + Qn

,

where Pn,Qn are to be understood as Pn(λ,λ2),Qn(λ,λ2).

Lemma 3 For the blocking process on R
(n)
k ,

Pn+1 = λ(λ2Pn + Qn)
k and Qn+1 = (Pn + Qn)

k, (1)

with P0 = λ and Q0 = 1.

Proof If there is a 1 at the root then r of its neighbours could be 1, k − r could be 0. The
root scores a single λ, and for each neighbouring 1 we must add a pair of 1, each scoring
λ2, so that

Pn+1 = λ

k∑

r=0

(
k

r

)
λr

2P
r
n Qk−r

n = λ(λ2Pn + Qn)
k.

With the root unoccupied, λ,λ2 disappear from the equation. �
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Lemma 4 Let

f (x) = λ + xk

λλ2 + xk
= 1 + λ(1 − λ2)

λλ2 + xk
,

for x > 0, and

ln = Pn + Qn

λ2Pn + Qn

, (2)

where Pn and Qn are defined in (1) and l0 = f (1) = (1 + λ)/(1 + λλ2). Then

(i) ln satisfies the recursion ln+1 = f (ln).
(ii) If λ2 < 1, f is strictly decreasing, (l2n+1) converges increasingly to lodd and (l2n) con-

verges decreasingly to leven. Also, the equation f (x) = x has a unique positive solution,
to be designated by l, such that lodd ≤ l ≤ leven. If λ2 > 1, f is strictly increasing and
the sequence (ln) converges decreasingly to l < 1, the unique solution of f (x) = x.

(iii) Let λc = kk/(k − 1)k+1. For each λ > λc there exists λ∗
2 ∈ (0,1) such that the blocking

model with parameters λ and λ2 ∈ (0, λ∗
2) has lodd < l < leven.

(iv) If λ ≤ λc , leven = lodd = l. At λ = λc and λ2 = 0 the corresponding lc = k/(k − 1).

Proof (i) From (1, 2) and the definition of f we obtain

f (ln) = λ(λ2Pn + Qn)
k + (Pn + Qn)

k

λλ2(λ2Pn + Qn)k + (Pn + Qn)k
= ln+1.

(ii) It is easily seen that f ′(x) < 0 and f (x) < f (1), for all x > 1, when λ2 < 1. Hence,
l0 = f (1) > f (l0) = l1, l0 = f (1) > f (f (l0)) = l2 and l3 = f (l2) > f (l0) = l1.

Using the inequalities for l0, l1 and l2 above, we proceed inductively to show that (l2n) is
decreasing and (l2n+1) increasing. Assume that l2n+2 < l2n then, since f is strictly decreas-
ing, we have

l2n+3 = f (l2n+2) > f (l2n) = l2n+1,

l2n+4 = f (l2n+3) < f (l2n+1) = l2n+2

and

l2n+5 = f (l2n+4) > f (l2n+2) = l2n+3.

Therefore, l2n+2 < l2n and l2n+3 > l2n+1 hold for all n ≥ 0.
We use next a double induction argument to show that

l2n+1 < l2m, (3)

for all m,n ≥ 0. The n = m = 0 case was established above. If we assume l2n+1 < l2m for
arbitrary m,n, we have

l2n+1 < l2n+3 = f (f (l2n+1)) < f (f (l2m)) = l2m+2 < l2m,

since (l2n+1) is increasing and (l2n) decreasing. Therefore, l2n+1 < l2m holds for all m,n ≥ 0.
Convergence of (l2n+1) to lodd and (l2n) to leven follow now from the monotonicity of the
sequences and inequality (3) implies lodd ≤ leven.

On the other hand, f is continuous, strictly decreasing and f (x) > 1. Then the fixed
point theorem guarantees that the equation f (x) = x has a unique root l such that 0 < l <
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f (0) = λ−1
2 . Finally, since l < l1 is equivalent to l > l0 but l1 < l0, we have necessarily that

l1 ≤ l ≤ l0 and hence, l2n+1 ≤ l ≤ l2n, for all n ≥ 0, and lodd ≤ l ≤ leven.
When λ2 > 1, f ′(x) > 0 and f (x) < f (1) < 1, for x < 1. Then, l0 = f (1) > f (l0) = l1

and l1 = f (l0) > f (l1) = l2. It is shown inductively that (ln) is decreasing and hence con-
vergent to l = f (l).

(iii) We show that under the stated conditions, the blocking model with parameters λ,λ2

has a repelling fixed point l, that is |f ′(l)| > 1. Hence, the sequence of iterates ln+1 = f (ln)

does not converge to l and necessarily lodd < leven. Notice first that

f ′(x) = −kxk−1λ(1 − λ2)

(λλ2 + xk)2
= −kxk−1(f (x) − 1)2

λ(1 − λ2)
= −kxk−1(f (x) − 1)

λλ2 + xk
. (4)

Given λ > λc , we solve the system of equations

f (l) = l, |f ′(l)| = 1, (5)

for l and λ2 in the region R = {(l, λ2) | k/(k − 1) < l < 1/λ2,0 < λ2 < 1}. We verify in fact
that (5) has a unique solution (l∗, λ∗

2) ∈ R.
Using (4), the above equations can be written equivalently as

λ = lk(l − 1)

1 − λ2l
, λ2 = lk

λ
(k − 1 − k/l), (6)

which, after some algebraic manipulation, are found to be equivalent to

λ = lk(k(l − 1) − 1), λ2 = k − 1 − k/l

k(l − 1) − 1
. (7)

Notice that lk(k(l − 1) − 1) is increasing in l, then, since λ > λc, the first equation in (7)
has a unique solution l∗ > k/(k − 1). The value of λ∗

2 is obtained simply by plugging l∗ in
the second equation of (6) or (7). Uniqueness of (l∗, λ∗

2) is clear from (7). Also, notice that
l∗ > k/(k − 1) implies 0 < λ∗

2 < 1.
We consider now a blocking model with the same parameter λ and parameter λ2 ∈

(0, λ∗
2). Let l be the corresponding fixed point. The fixed point equation applied to l and l∗

yields

λ = lk(l − 1)

1 − λ2l
= lk∗(l∗ − 1)

1 − λ∗
2l∗

.

Also, since lk(l − 1)/(1 − λ2l) is increasing in l and λ2, inequality λ2 < λ∗
2 implies

lk∗(l∗ − 1)

1 − λ2l∗
<

lk∗(l∗ − 1)

1 − λ∗
2l∗

= lk(l − 1)

1 − λ2l
,

which yields l∗ < l. Finally, notice that lk(k − 1 − k/l) increases with l, therefore λ2 < λ∗
2

and l∗ < l imply

λλ2 < λλ∗
2 = lk∗(k − 1 − k/l∗) < lk(k − 1 − k/l).

This inequality is equivalent to λλ2 + lk < klk−1(l −1) which, using (4), implies |f ′(l)| > 1,
so l is a repelling fixed point.
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Table 1 Critical values
k = 2 k = 3 k = 4

λ λ∗
2 λ λ∗

2 λ λ∗
2

4.0 0.0 1.69 0.0 1.05 0.00

4.8 0.03 2.03 0.06 1.26 0.08

5.6 0.05 2.36 0.09 1.47 0.13

6.4 0.06 2.70 0.12 1.69 0.17

7.2 0.07 3.04 0.14 1.90 0.20

8.0 0.08 3.38 0.16 2.11 0.22

(iv) If λ ≤ λc we have |f ′(l)| ≤ 1, so the fixed point l is attracting or neutral and it is
not obvious that the sequence of iterates ln+1 = f (ln) should converge to l. Noticing that
f (f (lodd)) = lodd and f (f (leven)) = leven, we show below that if λ ≤ λc there can only be a
unique root of f (f (x)) − x and so, lodd = l = leven.

Suppose a, b are such that f (a) = b and f (b) = a. Then, using the first form of the
derivative in (4) and then the second, we obtain

f ′(a)f ′(b) = k2ak−1bk−1(a − 1)2

(λλ2 + ak)2
· b

b
= k2ak−1(a − 1)2λ

(λλ2 + ak)(λ + ak)

(
(1 − λ2)

a − 1
− λ2

)
,

so that

f ′(a)f ′(b) <
k2(a − 1)λ

a(λ + ak)
, (8)

for λ2 > 0. The maximum of the right hand side of (8) occurs at x such that λ = xk(kx −
(k + 1)). Substituting back gives

f ′(a)f ′(b) <
k2(x − 1)xk(kx − (k + 1))

kxk+1(x − 1)
= k

(
k − k + 1

x

)
< 1,

for x < k/(k − 1). If λ = kk/(k − 1)k+1 then x = k/(k − 1), so, since dλ/dx > 0, for x > 1
in the above expression, λ < kk/(k − 1)k+1 implies x < k/(k − 1). Thus the derivative of
f (f (x)) − x is negative at all zeros and so there can be at most one of them and therefore,
lodd = l = leven.

Finally, at λ = λc and λ2 = 0 we have

f (lc) = λc + lc

lkc
= 1 + 1

k − 1
= lc.

�

The values of λ∗
2 are shown in Table 1 for different λs, starting with λc = kk/(k − 1)k+1.

2.3 The Convergence of the Probability at the Root on T
(n)
k

We define T
(n)
k to be the tree with radius n. It differs from R

(n)
k in that the root has k + 1

edges rather than k. Now all vertices have k + 1 edges except for those on the boundary
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which have 1. Calling the respective generating functions for this tree P T
n (s, t) and QT

n (s, t),
we have (omitting the s, t variables for the sake of brevity)

P T
n+1 = λ(λ2Pn + Qn)

k+1 and QT
n+1 = (Pn + Qn)

k+1. (9)

Theorem 5 Let p
(n)

0 be the probability the central vertex is occupied on T
(n)
k . Defining ln by

the recursion

ln = f (ln−1) = λ + lkn−1

λλ2 + lkn−1

, l0 = f (1),

we have
(i)

p
(n)

0 = ln − 1

ln + ln−1 − 1 − λ2lnln−1
.

(ii) If λ < λc then

p
(n)

0 → l − 1

2l − 1 − λ2l2
,

where l is the unique solution of the equation l = f (l).
(iii) If λ > λc and λ2 < λ∗

2 there is a phase-transition in that l2n → leven, l2n+1 → lodd , where
lodd < l < leven, and

p
(2n)

0

p
(2n+1)

0

→ leven − 1

lodd − 1
.

Proof From (2) and (9)

p
(n)

0 = P T
n

P T
n + QT

n

= λ

λ + lk+1
n−1

.

Using the recursion we have λ = (ln − 1)lkn−1/(1 − lnλ2) and (i) follows. For (ii) and (iii) we
take limits. �

We shall see that when the phase-transition occurs, the ratio of occupation probabilities
for sites 2n steps from the boundary to those for sites 2n + 1 steps from the boundary tends
to (leven −1)/(lodd −1). The pattern will then be one of alternating rings of higher and lower
density.

2.4 The Convergence of the Probability at a Site on T
(n)
k

We calculate the probability that a site distance m from the root, say sm, is occupied, m < n.
The path to sm is defined as the sequence of sites s0, s1, . . . , sm, distances 0,1, . . . ,m from
the root respectively. We designate by sm+1 one of the neighbours of sm, distance m+1 from
the root.

It is easy to see that the generating function for the subtree rooted at sm+1 is Pn−m−1, if
sm+1 is occupied, and Qn−m−1, when sm+1 is unoccupied. Also, if U0 designates the gener-
ating function corresponding to T

(n)
k , when the subtree rooted at s1 is excluded and the root

is unoccupied, then

U0 = (Pn−1 + Qn−1)
k.
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If V0 designates the corresponding generating function when the root is occupied, we have

V0 = λ(λ2Pn−1 + Qn−1)
k.

More generally, if Um is the generating function for T
(n)
k when the subtree rooted at sm+1 is

excluded and sm is unoccupied, we have

Um = (Pn−m−1 + Qn−m−1)
k−1(Um−1 + Vm−1). (10)

When sm is occupied, the corresponding generating function is given by

Vm = λ(λ2Pn−m−1 + Qn−m−1)
k−1(Um−1 + λ2Vm−1).

Finally, if U ∗
m and V ∗

m designate the generating functions when the subtree rooted at sm+1 is
included, we have

U ∗
m = (Pn−m−1 + Qn−m−1)

k(Um−1 + Vm−1)

= (Pn−m−1 + Qn−m−1)Um

and

V ∗
m = (λ2Pn−m−1 + Qn−m−1)

k(Um−1 + λ2Vm−1)

= (λ2Pn−m−1 + Qn−m−1)Vm.

Putting

Wm = Um + Vm

Um + λ2Vm

(11)

gives

W0 = lkn−1 + λ

lkn−1 + λλ2
= f (ln−1) = ln (12)

and

Wm = lk−1
n−m−1Wm−1 + λ

lk−1
n−m−1Wm−1 + λλ2

. (13)

Theorem 6 Let p(n)
m be the probability that a site distance m from the root is occupied.

Then,

(i) if λ ≤ λc ,

p(n)
m → l − 1

2l − 1 − λ2l2
, (14)

as n → ∞.
(ii) If λ > λc and λ2 < λ∗

2

p(n)
m → leven − 1

leven + lodd − 1 − λ2levenlodd

, (15)

as n − m → ∞ through even values.
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(iii) If λ > λc and λ2 < λ∗
2

p(n)
m → lodd − 1

leven + lodd − 1 − λ2levenlodd

, (16)

as n − m → ∞ through odd values.

Proof We use an inductive argument to show that, if λ2 < λ∗
2 and λ > λc , Wm defined in (11)

converges either to leven or lodd , as n − m → ∞, through even or odd values, for any m ≥ 0.
The result for m = 0 follows from (12) and Lemma 4(iii). Suppose Wm−1 converges to leven

or lodd as n − (m − 1) → ∞ through even or odd values. Then, from (13), if n − m → ∞
through even values, Wm−1 → lodd and

Wm → lk−1
odd lodd + λ

lk−1
odd lodd + λλ2

= f (lodd) = leven. (17)

Analogously, if n − m → ∞ through odd values, Wm → lodd .
On the other hand, if λ ≤ λc , we have from Lemma 4(iv), l = lodd = leven so that Wm → l,

as n → ∞, for all m ≥ 0.
Notice that

p(n)
m = V ∗

m

U ∗
m + V ∗

m

= Vm

Umln−m−1 + Vm

= Vm/Um

ln−m−1 + Vm/Um

. (18)

Also, from (11), Vm/Um = (Wm − 1)/(1 − λ2Wm). Replacing in (18) we obtain

p(n)
m = Wm − 1

Wm − 1 + (1 − λ2Wm)ln−m−1
. (19)

(i) As n → ∞, ln−m−1 and Wm converge to l, so, using (19), convergence (14) follows. For
(ii) and (iii), using again (19) and letting n − m → ∞ through even or odd values, (15) and
(16) follow. �

2.5 The Convergence of the Probability of a Pattern on T
(n)
k

We shall now show that the probability of any pattern has a limit as n → ∞ through even
values and a possibly different limit as n → ∞ through odd values.

We consider a set of sites A in T
(n)
k , which remains fixed as n grows. We recall that a

pattern π(A) is defined by a function from A to {0,1}. Let T
(m)
k denote the subtree of T

(n)
k

consisting of all sites distance ≤m from the root. Clearly, for any A, there exists m such that
A is contained in T

(m)
k so the probability of a pattern π(A) can be obtained by adding the

probabilities of patterns π(T
(m)
k ) whose values on A coincide with those of π(A). Hence,

the asymptotic behavior of P (2n)(π(A)) follows from that of P (2n)(π(T
(m)
k )).

Next we prove two technical lemmas.

Lemma 7 If r0 + r1 = km, then

Q
r0
n P

r1
n

Qn+m + Pn+m

(20)

converges, as n → ∞ through even or odd values.
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Proof For m = 1, dividing top and bottom by Qk
n in (20) gives

(Pn/Qn)
r1

Qn+1/Qk
n + Pn+1/Qk

n

. (21)

From (1) and (2) we obtain

Pn

Qn

= ln − 1

1 − λ2ln
,

Qn+1

Qk
n

= (Pn + Qn)
k

Qk
n

=
[

ln(1 − λ2)

1 − λ2ln

]k

. (22)

Hence, by Lemma 4, (21) converges to possibly different values, as n → ∞ through even or
odd values.

We reason inductively to show the assertion is true for all m. Assume it is true for m

then, for r0 + r1 = km+1, there exist a, b, c, d such that r0 = akm + b, r1 = ckm + d , with
b + d = km and a + c = k − 1, giving

Q
r0
n P

r1
n

Qn+m+1 + Pn+m+1
=

[
Qkm

n

Qn+m + Pn+m

]a [
P km

n

Qn+m + Pn+m

]c

×
[

Qb
nP

d
n

Qn+m + Pn+m

][
(Qn+m + Pn+m)k

Qn+m+1 + Pn+m+1

]
.

The first three brackets have limits by the induction hypothesis and the last, from (1) and
Lemma 4. �

Lemma 8 If r0 + r1 = (k + 1)km−1, then

Q
r0
n P

r1
n

QT
n+m + P T

n+m

converges, as n → ∞ through even or odd values.

Proof Let f0, g0, f1 and g1 be such that f0 + g0 = r0, f1 + g1 = r1, f0 + f1 = km and
g0 + g1 = km−1 then,

Q
r0
n P

r1
n

QT
n+m + P T

n+m

=
[

Q
f0
n P

f1
n

Qn+m + Pn+m

][
Q

g0
n P

g1
n

Qn+m−1 + Pn+m−1

]

×
[

(Qn+m + Pn+m)(Qn+m−1 + Pn+m−1)

QT
n+m + P T

n+m

]
.

The first two terms on the right converge by Lemma 7. From (1) and (9), the last term can
be written as

Qn+m

Qk
n+m−1

· (1 + Pn+m/Qn+m)(1 + Pn+m−1/Qn+m−1)

λ(1 + λ2Pn+m−1/Qn+m−1)k+1 + (1 + Pn+m−1/Qn+m−1)k+1

and convergence follows from (22) and Lemma 4. �

Theorem 9 Let π(A) be a pattern associated to a fixed set of vertices A in T
(n)
k , then

lim
n→∞P (2n)(π(A)) and lim

n→∞P (2n+1)(π(A))

exist.
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Proof Assume A is contained in T
(m)
k , for some m, so it is sufficient to prove the theorem

for π(T
(m)
k ). If there are r0 0’s and r1 1’s on the boundary and if n1 is the number of internal

occupied sites and n2 the number of occupied pairs of neighbouring sites, at least one of
which is internal, then

P (n)(π(T
(m)
k )) = λn1λ

n2
2

Q
r0
n−mP

r1
n−m

QT
n + P T

n

,

which, by Lemma 8, tends to a limit as n → ∞ through even or odd values. �

We study the ratio of probabilities of a pattern and its translated image. A translation of
T

(r)
k through distance m, m+ r ≤ n, is a transformation on T

(n)
k mapping the root to any site

distance m from the root and preserving all neighbourhood relations of T
(r)
k . The translation

of a pattern π(T
(r)
k ) is defined as the pattern π(T

(r)
k + m) induced on the translated tree

T
(r)
k + m. That is, the 0,1 value of any given site on T

(r)
k is equal to that of its translated

image.
We shall consider a particular pattern π(T

(r)
k ) in which all the outer (boundary) sites are

unoccupied.

Lemma 10 If the pattern π(T
(r)
k ) has all sites on its boundary unoccupied, then the weight

(generating function) of π(T
(r)
k + m) is given by

�m := λn1λ
n2
2 Qkr

n−m−rQ
(k−1)kr−2

n+2−m−rQ
(k−1)kr−3

n+4−m−r · · ·Qk−1
n−m+r−2Um−r , (23)

for m > r , and

�m := λn1λ
n2
2 Qkr

n−m−rQ
(k−1)kr−2

n+2−m−rQ
(k−1)kr−3

n+4−m−r · · ·Q(k−1)kr−m

n+m−r−2 Qkr−m

n+m−r , (24)

for m ≤ r , where n1 is the number of internal occupied sites and n2 the number of internal
occupied pairs of sites.

Proof Let s0 be the root of T
(n)
k and s0, . . . , sm the path from s0 to sm, which is the root

of T
(r)
k + m. We follow the same line of reasoning of previous subsections to derive the

generating functions. We notice here that internal sites contribute if they are occupied. The
remaining contribution depends only on the (k + 1)kr boundary sites of T

(r)
k + m, which

have to be considered according to their distances from s0.
When m > r , the number of boundary sites distance m + r from s0 is kr since there

are k edges emerging from sm, with kr−1 boundary sites each. One step back we are on
sm−1, from which (k − 1) edges emerge, with kr−2 boundary sites each. Hence, there are
(k − 1)kr−2 boundary sites, distance m− 1 + r − 1 = m+ r − 2 from s0. Further back to s0,
we find that k−1 edges emerge from si, i < r , with kr−i−1 boundary sites each. So, there are
(k−1)kr−i−1 boundary sites, distance m+r −2i from s0. Finally, there is only one boundary
site distance m−r from s0. (We note that kr + (k−1)kr−2 +· · ·+ (k−1)+1 = (k+1)kr−1.)

The contribution of internal sites to the generating function is λn1λ
n2
2 . The term due to

outer sites distance m+ r − 2i from s0 is Q
(k−1)kr−i−1

n−(m+r−2i), i ≤ r − 1, since they are unoccupied.
Finally, the contribution of the single site distance m − r is Um−r (see (10)), since the sit-
uation corresponds to the exclusion of a subtree rooted at sm−r+1 and sm−r is unoccupied.
Collecting terms we get (23).
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The case m ≤ r is analogous, the difference being that now s0 is in T
(r)
k +m. This implies

that boundary sites are distance at least r − m from s0. For i < m, the number of boundary
sites distance m + r − 2i is, as before, (k − 1)kr−i+1 but, for i = m, it turns out to be kr−m.
For the generating function we proceed as above, except that all terms due to boundary sites
are of the Q type. Formula (24) is obtained by collecting terms corresponding to inner and
outer sites. �

Lemma 11 Let π(T
(r)
k ) be a pattern with b1 occupied and b0 = (k+1)kr−1 −b1 unoccupied

boundary sites. Let ρm = �m/�m+1 be the ratio of weights as the center moves from m to
m + 1. Then

(i) ρm → Lb0Mb1 as n − m − r → ∞ through even values, and
(ii) ρm → L−b0M−b1 as n − m − r → ∞ through odd values,

where

L = 1/leven − λ2

1/lodd − λ2
and M = 1 − 1/leven

1 − 1/lodd

. (25)

Proof We consider first the case with b1 = 0 occupied boundary sites. Notice that, for m > r ,

ρm =
[

Qn−m−r

Qk
n−m−r−1

]kr−1 [
Qk

n−m−r

Qn+1−m−r

](k−1)kr−2 [
Qk

n+2−m−r

Qn+3−m−r

](k−1)kr−3

· · ·

×
[

Qk
n−m+r−4

Qn−m+r−3

](k−1)

Qk−1
n−m+r−2

Um−r

Um+1−r

. (26)

For the first term of ρm above we have, from (22) and Lemma 4,

[
Qn−m−r

Qk
n−m−r−1

]kr−1

=
[

(1 − λ2)ln−m−r−1

1 − λ2ln−m−r−1

]kr

→
[

(1 − λ2)lodd

1 − λ2lodd

]kr

, (27)

as n − m − r → ∞ through even values. For intermediate terms

[
Qk

n−(m+r−2i)

Qn−(m+r−2i)+1

](k−1)kr−i−2

→
[

1 − λ2leven

(1 − λ2)leven

](k−1)kr−i−1

, (28)

as n − m − r → ∞ through even values, i = 0, . . . , r − 2. Finally, for the last term we have

Qk−1
n−m+r−2

Um−r

Um−r+1
= 1

/[
Pn−m+r−2

Qn−m+r−2
+ 1

]k−1 [
1 + Vm−r

Um−r

]
.

From (22) and Lemma 4, the first bracket above converges to ((1−λ2)leven/(1−λ2leven))
k−1

as n − m + r → ∞ through even values. For the second we use (11) and (17) to obtain

1 + Vm−r

Um−r

= (1 − λ2)Wm−r

1 − λ2Wm−r

→ (1 − λ2)leven

1 − λ2leven

, (29)

as n − m + r → ∞ through even values.
Collecting limits from (27), (28) and (29), we obtain

ρm →
[

(1 − λ2)lodd

1 − λ2lodd

]kr [
1 − λ2leven

(1 − λ2)leven

]kr

=
[

lodd

leven

· 1 − λ2leven

1 − λ2lodd

]kr

= Lkr

,
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as n − m + r → ∞ through even values. Now, if we take into account the b1 occupied
boundary sites, some Q or U terms in (26) have to be replaced by P or V terms. To this
end, correcting factors are introduced and their limiting behaviour characterized.

When a boundary site distance m + r − 2i from the root is occupied, then the correcting
factor in ρm, for i ≤ r − 1, m > r , is

Pn−(m+r−2i)

Qn−(m+r−2i)

· Qn−(m+r−2i)−1

Pn−(m+r−2i)−1
→ leven − 1

1 − λ2leven

· 1 − λ2lodd

lodd − 1
= ML−1, (30)

as n − m − r → ∞ through even values. The limit follows from the first formula in (22).
If the site distance m − r is occupied (m > r), the correcting factor is

Vm−r

Um−r

· Um−r+1

Vm−r+1
→ leven − 1

1 − λ2leven

· 1 − λ2lodd

lodd − 1
= ML−1, (31)

as n − m − r → ∞ through even values. The limit follows from (29).
Results (30) and (31) show that in the limit, the global correcting factor for ρm, corre-

sponding to b1 occupied boundary sites is (ML−1)b1 and convergence (i) follows. For (ii)
notice that lodd and leven are interchanged when n − m − r → ∞ through odd values.

When m ≤ r, the result is the same since (k − 1)kr−1 +· · ·+ (k − 1)kr−m + kr−m = kr . �

Theorem 12 Consider a pattern π(T
(r)
k ) that has b1 occupied and b0 = (k + 1)kr−1 − b1

unoccupied sites on its boundary, then, as n → ∞,

P (n)(π(T
(r)
k + m))

P (n)(π(T
(r)
k ))

→
{1, if m is even,

R−1, if m is odd and n − r takes even values,
R, if m is odd and n − r takes odd values,

where R = Lb0Mb1 and L,M are defined in (25).
Further, for fixed A,m1,m2,

lim
n1→∞P (n1)(π(A) + m1) = lim

n2→∞P (n2)(π(A) + m2),

when n1, n2 → ∞ in such a way that n1 − m1 and n2 − m2 always have the same parity.

Proof Note that

P (n)(π(T
(r)
k + m))

P (n)(π(T
(r)
k ))

=
m−1∏

j=0

P (n)(π(T
(r)
k + j + 1))

P (n)(π(T
(r)
k + j))

=
m−1∏

j=0

ρ−1
j .

If m is even and n − r → ∞ through even or odd values, ρ−1
0 · · ·ρ−1

m−1 converges either to
(R−1R) · · · (R−1R) = 1 or (RR−1) · · · (RR−1) = 1. If m is odd and n − r → ∞ through
even values, then the limit is (R−1R) · · · (R−1R) limρ−1

m−1 = R−1. Finally, if m is odd and
n − r → ∞ through odd values, the limit is (R−1R) · · · (R−1R) limρ−1

m−1 = R. The last as-
sertion follows from Theorems 6 and 9. �

The last line of Theorem 12 shows that it is essentially the parity of the distance from the
boundary that determines the distribution at the centre.



J Stat Phys (2008) 130: 935–955 949

2.6 The Markov Property

We recall that a configuration η is a function assigning the value 0 or 1 to each site of T
(n)
k .

Theorem 13 If a site sr in T
(n)
k is distance r from the boundary, and sr , sr+1, sr+2, . . . , sr+m

form a chain of neighbouring sites with each sl distance l from the boundary, then, for
ηj ∈ {0,1},

P (n)(η(sr ) = 1|η(sr+1) = η1, . . . , η(sr+m) = ηm) = P (n)(η(sr ) = 1|η(sr+1) = η1),

with

P (n)(η(sr ) = 1|η(sr+1) = η1) = (1 − η1)
lr − 1

(1 − λ2)lr
+ η1

λ2(lr − 1)

1 − λ2
.

Proof Observe that the pattern with η(sr ) = 1, η(sr+1) = η1, . . . , η(sr+m) = ηm differs from
that only requiring η(sr+1) = η1, . . . , η(sr+m) = ηm in that one of the branches from sr+1 is
no longer free but must start with a 1. Since sr is distance r from the boundary and η1 = 0,

then, instead of weight Pr + Qr for paths from sr along that branch, we have Pr. So, the
ratio of probabilities (or weights) is Pr/(Pr + Qr) = (lr − 1)/(1 − λ2)lr . If η1 = 1, then,
instead of λ2Pr + Qr for paths from sr along that branch, we have λ2Pr and the ratio of
probabilities is λ2Pr/(λ2Pr + Qr) = λ2(lr − 1)/(1 − λ2). �

2.7 Correlations

We calculate the correlations on T
(n)
k between η(s0) and η(sm), where s0 is the root and sm

a vertex distance m away. Let

p
(n)
j = P (n)(η(sj ) = 1), p

(n)
lj = P (n)(η(sl) = 1, η(sj ) = 1) and

corr(n)(η(s0), η(sm)) = p
(n)

0m − p
(n)

0 p(n)
m√

p
(n)

0 (1 − p
(n)

0 )

√
p

(n)
m (1 − p

(n)
m )

(32)

the correlation between η(s0) and η(sm).

Theorem 14 Consider the blocking process on T
(n)
k . Then corr(n)(η(s0), η(sm)) converges

to rm, as n → ∞, with

rm = (−1)m

[
(1 − λ2leven)(leven − 1)

(1 − λ2)leven

(1 − λ2lodd)(lodd − 1)

(1 − λ2)lodd

]m/2

, (33)

when λ2 ≤ 1, and

rm =
[

(λ2l − 1)(1 − l)

(λ2 − 1)l

]m

,

when λ2 > 1.

Proof We first consider the case λ2 < 1. Define u(n)
m = P (n)(η(sm) = 1|η(s0) = 1) =

p
(n)

0m/p
(n)

0 . Then, from Theorem 13, we have u
(n)

0 = 1 and
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u(n)
m = P (n)(η(sm) = 1|η(sm−1) = 1)u

(n)

m−1

+ P (n)(η(sm) = 1|η(sm−1) = 0)(1 − u
(n)

m−1)

= u
(n)

m−1

λ2(ln−m − 1)

1 − λ2
+ (1 − u

(n)

m−1)
ln−m − 1

(1 − λ2)ln−m

= −u
(n)

m−1αn−m + βn−m,

with

αn−m = (1 − λ2ln−m)(ln−m − 1)

(1 − λ2)ln−m

, βn−m = ln−m − 1

(1 − λ2)ln−m

.

From Theorem 9, u(n)
m has limits (possibly different) as n → ∞ through even/odd values.

Let um be the limit as n → ∞ through even values. Then, from Lemma 4,

u2m = −u2m−1αeven + βeven and u2m−1 = −u2m−2αodd + βodd,

so,

u2m = u2(m−1)αoddαeven − βoddαeven + βeven.

The above recurrence can be solved to yield

u2m = (1 − p0)

[
(1 − λ2leven)(leven − 1)

(1 − λ2)leven

(1 − λ2lodd)(lodd − 1)

(1 − λ2)lodd

]m

+ p0,

where p0 := limp
(n)

0 = (leven − 1)/(leven + lodd − 1 − λ2levenlodd), as n → ∞ through even
values.

Since p2m := limp
(n)

2m = p0, as n → ∞ through even values, (32) yields

corr(n)(η(s0), η(s2m)) → (u2m − p2m)p0

p0(1 − p0)

=
[

(1 − λ2leven)(leven − 1)

(1 − λ2)leven

(1 − λ2lodd)(lodd − 1)

(1 − λ2)lodd

]m

.

In a similar fashion, the above steps can be repeated to obtain

corr(n)(η(s0), η(s2m+1)) → (u2m+1 − p2m+1)p0√
p0(1 − p0)

√
p2m+1(1 − p2m+1)

= −
[

(1 − λ2leven)(leven − 1)

(1 − λ2)leven

(1 − λ2lodd)(lodd − 1)

(1 − λ2)lodd

]m+1/2

,

as n → ∞ through even values.
Combining these results and noticing their symmetry in leven, lodd , so that they do not

depend on whether n → ∞ through even or odd values, we obtain (33).
When λ2 > 1 all correlations are positive. From (32) and Lemma 4, we have ln → l and

corr(n)(η(s0), η(sm)) → (um − pm)

(1 − p0)
=

[
(λ2l − 1)(1 − l)

(λ2 − 1)l

]m

. �

We note that the decay of the correlation is geometric whereas in the RSA models, the
decay goes as 1/m!.
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3 The Dimer Model

In the dimer model pairs of particles arrive at empty pairs of neighbouring sites at rate λ

and are removed at rate 1. The analysis follows that of the blocking process with the same
notation.

The probability of a configuration is proportional to λ#dimers. If the root of R
(n)
k is not

occupied, then there is no restriction on placing dimers on the k subtrees. If the root is
occupied, then there must be a dimer occupying the root and one of the k neighbouring
vertices. This vertex is adjacent to k rooted trees each of size n − 2. On the k − 1 other
vertices no restrictions are placed. Thus,

Lemma 15 For the dimer process on R
(n)
k

Qn+1 = (Qn + Pn)
k (34)

and

Pn+1 = kλ(Qn + Pn)
k−1(Qn−1 + Pn−1)

k = kλQn(Qn + Pn)
k−1. (35)

On T
(n)
k

QT
n+1 = (Qn + Pn)

k+1 and P T
n+1 = (k + 1)λQn(Qn + Pn)

k. (36)

Lemma 16 Let

f (x) = kλ

1 + x
, x ≥ 0, and ln = Pn

Qn

,

where Pn,Qn are defined in (34) and (35). Then

(i) ln satisfies the recursion ln+1 = f (ln).
(ii) The sequence (ln) converges to l < 1, the unique solution of f (l) = l.

Proof Assertion (i) follows from ln+1 = kλQn(Qn +Pn)
k−1/(Qn +Pn)

k = kλ/(1 + ln). For
(ii) notice that, since f is continuous and decreasing, the fixed point theorem implies that
f (x) = x has a unique solution l. Besides, |f ′(x)| = kλ/(1+x)2 and |f ′(l)| = l/(1+ l) < 1
so l is an attracting fixed point. Also, since |f ′(x)| < 1 for x >

√
kλ − 1 and l0 = 0, l1 =

f (l0) = kλ >
√

kλ − 1, the sequence (ln) converges to the fixed point l. �

3.1 The Convergence of the Probability at the Root on T
(n)
k

Theorem 17 Let p
(n)

0 be the probability the central vertex is occupied on T
(n)
k . Then

p
(n)

0 = (k + 1)ln

k + (k + 1)ln
→ (k + 1)l

k + (k + 1)l
,

as n → ∞, where l = (
√

1 + 4kλ − 1)/2.

Proof From (36) we have

p
(n)

0 = P T
n

QT
n + P T

n

= (k + 1)λQn−1(Qn−1 + Pn−1)
k

(Qn−1 + Pn−1)k+1 + (k + 1)λQn−1(Qn−1 + Pn−1)k

= λ(k + 1)

1 + ln−1 + λ(k + 1)
= (k + 1)ln

k + (k + 1)ln
.
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Convergence follows from Lemma 16(ii) and the value of l is obtained as the unique positive
solution of equation l2 + l − kλ = 0. �

3.2 The Convergence of the Probability at a Site on T
(n)
k

Because (ln) has a unique limit point many of the complications of the blocking process
do not arise for the dimer model. However, some difficulties emerge owing to the dimers
occupying pairs of sites. As in Sect. 2.4, we consider a site sm distance m from the root.
The path to sm is the sequence of sites s0, s1, . . . , sm, distances 0,1, . . . ,m from the root
respectively. We designate by sm+1 one of the neighbours of sm, distance m + 1 from the
root.

We consider several generating functions and give recurrence relations among them. Let
Am be the generating function when the subtree rooted at sm+1 is excluded and sm is unoc-
cupied; Bm is the generating function when the subtree rooted at sm+1 is excluded and there
is a dimer at sm−1, sm; Cm is as Bm but the dimer is at sm, sm+1. Finally, let Dm be as Cm but
the dimer is at sm, s̃m+1, where s̃m+1 
= sm+1 is another site distance m + 1 from the root.

Putting Sm = Pm + Qm, we then have the following recurrence relations:

Am = Sk−1
n−m−1(Am−1 + Bm−1 + Dm−1),

Bm = Sk−1
n−m−1Cm−1, (37)

Cm = Sk−1
n−m−1λ(Am−1 + Bm−1 + Dm−1),

Dm = Sk−2
n−m−1Qn−m−1(k − 1)λ(Am−1 + Bm−1 + Dm−1).

Further, using a superscript ∗ to indicate the generating functions when sm+1 is included, we
have:

A∗
m = AmSn−m−1, B∗

m = BmSn−m−1,
(38)

C∗
m = CmQn−m−1, D∗

m = DmSn−m−1.

Theorem 18 Let p(n)
m be the probability that sm is occupied and q(n)

m the probability of a
dimer at sm, sm+1. Then

p(n)
m → (k + 1)l

k + (k + 1)l
, and q(n)

m → l

k + (k + 1)l
,

where l = (
√

1 + 4kλ − 1)/2.

Proof From Lemma 16 and relations (37, 38), we have D∗
m = (k − 1)C∗

m and

C∗
m + D∗

m

A∗
m

= k
CmQn−m−1

AmSn−m−1
= kλ

1 + ln−m−1
= ln−m. (39)

Also,

B∗
m

A∗
m

= Bm

Am

= Cm−1

Am−1 + Bm−1 + Dm−1

= λ

1 + Bm−1/Am−1 + (k − 1)λ/(1 + ln−m−1)
(40)
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and

B1

A1
= λSk

n−1

Sk
n−1 + kλQn−1S

k−1
n−1

= λ

1 + kλ/(1 + ln−1)
= λ

1 + ln
= ln+1

k
→ l

k
, (41)

as n → ∞. Using (40) and (41), an inductive argument shows that

Bm

Am

→ l

k
, (42)

as n → ∞. Finally, from (39), (40) and (42), we have

p(n)
m = B∗

m + C∗
m + D∗

m

A∗
m + B∗

m + C∗
m + D∗

m

= B∗
m/A∗

m + ln−m

1 + B∗
m/A∗

m + ln−m

→ (k + 1)l

k + (k + 1)l
,

as n → ∞, obtaining the same asymptotic probability as at the root.
Similarly, for the probability of a dimer at sm, sm+1, we have

q(n)
m = C∗

m

A∗
m + B∗

m + C∗
m + D∗

m

→ l/k

1 + l/k + l
= l

k + (k + 1)l
,

which is 1/(k + 1) times the probability sm is occupied as would be expected. �

3.3 The Convergence of the Probability of a Pattern on T
(n)
k

The rest closely follows Sect. 2.4. We shall indicate where the treatment differs. Lemmas 7
and 8 and Theorem 9 remain the same. Equation (23) in Lemma 10 has Am−r in place of
Um−r . In expression (26) for ρm, all terms except the last one remain the same. It is

Qk−1
n−m+r−2

Am−r

Am+1−r

= Qk−1
n−m+r−2

Sk−1
n−m+r−2

Am−r

Am−r + Bm−r + Dm−r

(43)

→ 1

(1 + l)k−1

1

1 + λ
(1+l)

+ (k−1)λ

(1+l)

= 1

(1 + l)k
,

using (37) and (42).
If we now substitute for 0s on the boundary 1s which belong to dimers which lie within

T
(r)
k , then the only change to (43) is substituting Cm−r in place of Am−r . Since Cm/Am =

Cm+1/Am+1 = λ, the result is not changed. Similarly, if we now substitute for 0s on the
boundary 1s which do not belong to dimers which lie within T

(r)
k , then we substitute terms

like Pn−m−r for Qn−m−r , but, since in the limit Pn−m−r/Qn−m−r = Pn−m+1−r/ Qn−m+1−r

and Bm/Am = Bm+1/Am+1, the ratio does not change when the pattern is displaced.

Theorem 19 In the dimer model, if π(A) is a pattern fixed relative to the root then, for
all m,

lim
n→∞P (n)(π(A)) = lim

n→∞P (n)(π(A) + m).



954 J Stat Phys (2008) 130: 935–955

A process which superficially looks like the dimer model is the Double Flipping Process
(DFP) in which the only flips allowed are 11 → 00 at rate b and 00 → 11 at rate a. It
is shown in [9] that, if the initial measure is translation invariant, the process converges
to the product measure with density

√
a/(

√
a + √

b). The difference can be seen in the
following transitions 0000 → 0011 → 1111 → 1001, allowable in the DFP but not in the
dimer model.

3.4 Correlations

We calculate the correlation between η(s0), η(sm) in the limit, as n → ∞, using the same
notation as in Sect. 2.6 for the blocking process. We condition on η(s0) = 0. There are
then three possibilities for s1 along the path leading from s0 to sm. It can be unoccupied
(η(s1) = 0) or it can be occupied by one end of a dimer along the path to sm or it can be
occupied by one end of a dimer not along the path to sm, both of the latter possibilities having
η(s1) = 1. In general if there is a 0 at position sr , then the generating function for the subtree
rooted at sr+1 is Pn−r−1 + Qn−r−1, whereas if there is also a 0 at sr+1 it is Qn−r−1, so that
P (n)(η(sr+1) = 0|η(sr) = 0) = Qn−r−1/(Pn−r−1 + Qn−r−1) → 1/(l + 1), as n → ∞. Given
η(sr+1) = 1, the probability is 1/k that the dimer lies along the path to sm, (k − 1)/k that
it does not. These conditional probabilities are the same if η(sr) = 1 and the dimer which
covers sr does not cover sr+1. Thus, as we move from the root to sm, we have a regeneration
point wherever there is either a 0, or one end of a dimer with the other end not on the path,
or the second end of a dimer which lies on the path.

Theorem 20 For the dimer model on T
(n)
k , corr(n)(η(s0), η(sm)) converges to rm, as n → ∞,

with

rm = 1

(k + 1)(1 + l)

( −l

k(1 + l)

)m−1

,

for m ≥ 1.

Proof Let P0 denote the asymptotic probability measure for the dimer model, conditional
on η(s0) = 0, that is, P0(·) = limn→∞ P (n)(·|η(s0) = 0). Let πr = P0(η(sr ) = 0) and qr = P0

(sr is a regeneration point). Then, clearly q0 = 1 and

πr = 1

1 + l
qr−1, (44)

for r ≥ 1, since the (limiting) probability of having a 0 right after a regeneration point is
1/(1 + l). Of course, if sr−1 is not a regeneration point, η(sr ) = 0 is impossible.

On the other hand, sr is not a regeneration point if and only if sr−1 is a regeneration
point and sr is the beginning of a dimer lying along the path to sm. In terms of conditional
probabilities we have

1 − qr = l

k(1 + l)
qr−1. (45)

From (44) and (45) we obtain the recursion

πr = 1

1 + l
− l

k(1 + l)
πr−1,
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with π1 = 1/(1 + l), which is readily solved to yield

πr = k

k + (k + 1)l

(
1 −

( −l

k(1 + l)

)r)
,

for r ≥ 1. Finally, from Theorems 17 and 18, and formula (32), we have p0 := limn→∞ p
(n)

0 =
limn→∞ p(n)

m = (k + 1)l/(k + (k + 1)l) and corr(n)(η(s0), η(sm)) = corr(n)(1 − η(s0),

1 − η(sm)) → rm, with

rm = πm(1 − p0) − (1 − p0)
2

(1 − p0)p0

= πm − (1 − p0)

p0
= − k

(k + 1)l

( −l

k(1 + l)

)m

.
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